Доказана возможность уплотнить запись на жёстких дисках до размеров одного атома - «Новости сети»
Меню
Наши новости
Учебник CSS

Невозможно отучить людей изучать самые ненужные предметы.

Введение в CSS
Преимущества стилей
Добавления стилей
Типы носителей
Базовый синтаксис
Значения стилевых свойств
Селекторы тегов
Классы
CSS3

Надо знать обо всем понемножку, но все о немногом.

Идентификаторы
Контекстные селекторы
Соседние селекторы
Дочерние селекторы
Селекторы атрибутов
Универсальный селектор
Псевдоклассы
Псевдоэлементы

Кто умеет, тот делает. Кто не умеет, тот учит. Кто не умеет учить - становится деканом. (Т. Мартин)

Группирование
Наследование
Каскадирование
Валидация
Идентификаторы и классы
Написание эффективного кода

Самоучитель CSS

Вёрстка
Изображения
Текст
Цвет
Линии и рамки
Углы
Списки
Ссылки
Дизайны сайтов
Формы
Таблицы
CSS3
HTML5

Новости

Блог для вебмастеров
Новости мира Интернет
Сайтостроение
Ремонт и советы
Все новости

Справочник CSS

Справочник от А до Я
HTML, CSS, JavaScript

Афоризмы

Афоризмы о учёбе
Статьи об афоризмах
Все Афоризмы

Видео Уроки


Наш опрос



Наши новости

       
23-07-2018, 09:00
Доказана возможность уплотнить запись на жёстких дисках до размеров одного атома - «Новости сети»
Рейтинг:


Физики из федеральной политехнической школы Лозанны (EPFL), расположенной в Швейцарии, опубликовали исследования, в которых доказана возможность уплотнить запись на жёстких дисках или магнитных лентах до размеров одного атома. Это открывает небывалые перспективы перед «классическими» накопителями. Увы, твердотельная память и SSD не могут справиться с тем растущим потоком данных, который необходимо хранить каждый день. По самым скромным оценкам, ежедневный прирост информации приближается к 15 млн гигабайт. Запись информации на уровне одиночного атома стала бы настоящей находкой, с возможностью радикально увеличить плотность размещения информации на магнитных носителях.



Информация размещенная на сайте - «hs-design.ru»




Активнее других разработками на направлении одноатомной записи занимаются физики из Лозанны. На базе лабораторий EPFL ведутся фундаментальные исследования, которые подтверждают, что одноатомная запись больше не является фантастикой. Впрочем, до реального использования она тоже далека. Основной проблемой записи на уровне одиночного атома остаётся остаточная намагниченность. Из-за неё остаётся большая вероятность изменения направления магнитного поля атома под воздействием случайного внешнего поля или в случае температурных скачков. Физики доказали, что существуют материалы и состояния, когда магнитное поле одиночных атомов остаётся стабильным. Иначе говоря, данные после записи не теряются.


В ходе эксперимента использовалась подложка из оксида магния, которая абсорбировала в себя пары из атомов гольмия и вспомогательных атомов кобальта. «Битами» выступали атомы гольмия. С помощью наблюдения через сканирующий туннельный микроскоп учёные убедились, что сильное магнитное поле, как и нагрев не привели к потере «информации» — не изменили намагниченность атомов гольмия. Тем самым на практике подтверждена бистабильность одноатомной записи. По мнению учёных, это может стать последним элементом головоломки для дальнейшей коммерциализации одноатомной записи.

Доказана возможность уплотнить запись на жёстких дисках до размеров одного атома - «Новости сети»


Информация размещенная на сайте - «hs-design.ru»




Добавим, что эксперимент выявил способность атомов гольмия оставаться стабильными во внешнем магнитном поле силой, превышающей 8 тесла. С нагревом сложнее. Для записи и считывания данных на уровне одного атома необходимо опираться на квантовые механизмы. Это предполагает экстремально низкие температуры. Намагниченность атомов гольмия оставалась стабильной до температуры 35 К, но уже при нагреве до 45 К (–233,15 °C) атомы начинали спонтанно менять намагниченность в соответствии с направлением внешнего магнитного поля. На следующем этапе учёные намерены решить три ключевых вопроса по одноатомной записи: стабильность, запись и сигнально-шумовые характеристики процессов.

Физики из федеральной политехнической школы Лозанны (EPFL), расположенной в Швейцарии, опубликовали исследования, в которых доказана возможность уплотнить запись на жёстких дисках или магнитных лентах до размеров одного атома. Это открывает небывалые перспективы перед «классическими» накопителями. Увы, твердотельная память и SSD не могут справиться с тем растущим потоком данных, который необходимо хранить каждый день. По самым скромным оценкам, ежедневный прирост информации приближается к 15 млн гигабайт. Запись информации на уровне одиночного атома стала бы настоящей находкой, с возможностью радикально увеличить плотность размещения информации на магнитных носителях. Информация размещенная на сайте - «hs-design.ru» Активнее других разработками на направлении одноатомной записи занимаются физики из Лозанны. На базе лабораторий EPFL ведутся фундаментальные исследования, которые подтверждают, что одноатомная запись больше не является фантастикой. Впрочем, до реального использования она тоже далека. Основной проблемой записи на уровне одиночного атома остаётся остаточная намагниченность. Из-за неё остаётся большая вероятность изменения направления магнитного поля атома под воздействием случайного внешнего поля или в случае температурных скачков. Физики доказали, что существуют материалы и состояния, когда магнитное поле одиночных атомов остаётся стабильным. Иначе говоря, данные после записи не теряются. В ходе эксперимента использовалась подложка из оксида магния, которая абсорбировала в себя пары из атомов гольмия и вспомогательных атомов кобальта. «Битами» выступали атомы гольмия. С помощью наблюдения через сканирующий туннельный микроскоп учёные убедились, что сильное магнитное поле, как и нагрев не привели к потере «информации» — не изменили намагниченность атомов гольмия. Тем самым на практике подтверждена бистабильность одноатомной записи. По мнению учёных, это может стать последним элементом головоломки для дальнейшей коммерциализации одноатомной записи. Информация размещенная на сайте - «hs-design.ru» Добавим, что эксперимент выявил способность атомов гольмия оставаться стабильными во внешнем магнитном поле силой, превышающей 8 тесла. С нагревом сложнее. Для записи и считывания данных на уровне одного атома необходимо опираться на квантовые механизмы. Это предполагает экстремально низкие температуры. Намагниченность атомов гольмия оставалась стабильной до температуры 35 К, но уже при нагреве до 45 К (–233,15 °C) атомы начинали спонтанно менять намагниченность в соответствии с направлением внешнего магнитного поля. На следующем этапе учёные намерены решить три ключевых вопроса по одноатомной записи: стабильность, запись и сигнально-шумовые характеристики процессов.

Теги: Новости сети, атомов записи одноатомной одного гольмия

Просмотров: 755
Комментариев: 0:   23-07-2018, 09:00
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 
Еще новости по теме:



Другие новости по теме:
Комментарии для сайта Cackle