•
Если человек ощущает свое участие в жизни общества, он создает не только материальные ценности для людей - он создает и самого себя. Из работы, в которой ярко выражен дух гражданственности, начинается истинное самовоспитание.
Афоризмы
•
Поистине, подобно солнцу, люблю я жизнь и все глубокие моря. И вот что называю я познанием: чтобы все глубокое поднялось на высоту мою!
Афоризмы
•
- «Оставайтесь голодными. Оставайтесь безрассудными». И я всегда желал себе этого. И теперь, когда вы заканчиваете институт и начинаете заново, я желаю этого вам.
Афоризмы
•
Воспитание личности - это воспитание такого стойкого морального начала, благодаря которому человек сам становится источником благотворного влияния на других, сам воспитывается и в процессе самовоспитания еще более утверждает в себе собственное моральное начало.
Как известно, компания Google самостоятельно разрабатывает заказные БИС или ASIC для ускорителей Tensor Processing Unit (TPU) по работе с моделями машинного обучения (ML). В компании делают акцент на матричные или тензорные вычисления. До сих пор компания реализовывала проекты по ускорению моделей с помощью фреймворка TensorFlow на базе центров по обработке данных. С настоящего времени Google собирается перенести задачи по принятию решений в конечные (периферийные) устройства масштаба вещей с подключением к Интернету. Иначе говоря, вооружить миниатюрные датчики и модули электронными «мозгами», которые в масштабе реального времени смогут принимать то или иное решение.
Информация размещенная на сайте - «hs-design.ru»
Для датчиков и модулей IoT компания разработала ASIC Edge TPU миниатюрных размеров. О габаритах чипа можно судить по фотографии выше, где он размещён на 19-мм монете в один цент США. При проектировании ускорителя акцент был сделан на гипернизкое потребление, поскольку датчики и модули вещей с подключением к Интернету в массе будут располагать только батарейным питанием. Разработка отвечает трём требованиям: максимальным соотношением производительность на ватт, максимальным соотношением производительность на доллар и, конечно же, решение должно быть как можно меньше по размерам.
Информация размещенная на сайте - «hs-design.ru»
По понятным причинам столь миниатюрный чип не способен обучаться моделям машинного обучения. Поэтому Google реализовала проект в виде двух ступеней. Обучаться ML будут удалённые центры по обработке данных. Ускоритель Edge TPU в конечных устройствах будет оперировать обученными моделями и принимать решения на базе обмена с удалёнными базами. Сфера использования такого тандема, уверены в Google, предельно широка. Датчики на местах моментально смогут определять брак в изделиях на заводских конвейерах, подсказывать владельцам магазинов о скором исчезновении товаров на полках, регулировать движение транспорта, включая автопилоты и, в общем случае, управлять процессами, в которых всегда что-то может пойти не так.
Информация размещенная на сайте - «hs-design.ru»
С октября текущего года компания начнёт распространять набор для разработчиков с ускорителями Edge TPU. Набор включает модуль SOM (system on module), который содержит Google Edge TPU, процессор NXP, Wi-Fi и чип безопасности Microchip. Набор уже можно заказать. Цена вопроса не раскрывается.
Как известно, компания Google самостоятельно разрабатывает заказные БИС или ASIC для ускорителей Tensor Processing Unit (TPU) по работе с моделями машинного обучения (ML). В компании делают акцент на матричные или тензорные вычисления. До сих пор компания реализовывала проекты по ускорению моделей с помощью фреймворка TensorFlow на базе центров по обработке данных. С настоящего времени Google собирается перенести задачи по принятию решений в конечные (периферийные) устройства масштаба вещей с подключением к Интернету. Иначе говоря, вооружить миниатюрные датчики и модули электронными «мозгами», которые в масштабе реального времени смогут принимать то или иное решение. Информация размещенная на сайте - «hs-design.ru» Для датчиков и модулей IoT компания разработала ASIC Edge TPU миниатюрных размеров. О габаритах чипа можно судить по фотографии выше, где он размещён на 19-мм монете в один цент США. При проектировании ускорителя акцент был сделан на гипернизкое потребление, поскольку датчики и модули вещей с подключением к Интернету в массе будут располагать только батарейным питанием. Разработка отвечает трём требованиям: максимальным соотношением производительность на ватт, максимальным соотношением производительность на доллар и, конечно же, решение должно быть как можно меньше по размерам. Информация размещенная на сайте - «hs-design.ru» По понятным причинам столь миниатюрный чип не способен обучаться моделям машинного обучения. Поэтому Google реализовала проект в виде двух ступеней. Обучаться ML будут удалённые центры по обработке данных. Ускоритель Edge TPU в конечных устройствах будет оперировать обученными моделями и принимать решения на базе обмена с удалёнными базами. Сфера использования такого тандема, уверены в Google, предельно широка. Датчики на местах моментально смогут определять брак в изделиях на заводских конвейерах, подсказывать владельцам магазинов о скором исчезновении товаров на полках, регулировать движение транспорта, включая автопилоты и, в общем случае, управлять процессами, в которых всегда что-то может пойти не так. Информация размещенная на сайте - «hs-design.ru» С октября текущего года компания начнёт распространять набор для разработчиков с ускорителями Edge TPU. Набор включает модуль SOM (system on module), который содержит Google Edge TPU, процессор NXP, Wi-Fi и чип безопасности Microchip. Набор уже можно заказать. Цена вопроса не раскрывается.