Новая технология 3D-печати приближает нас к созданию искусственного сердца - «Новости сети»
Меню
Наши новости
Учебник CSS

Невозможно отучить людей изучать самые ненужные предметы.

Введение в CSS
Преимущества стилей
Добавления стилей
Типы носителей
Базовый синтаксис
Значения стилевых свойств
Селекторы тегов
Классы
CSS3

Надо знать обо всем понемножку, но все о немногом.

Идентификаторы
Контекстные селекторы
Соседние селекторы
Дочерние селекторы
Селекторы атрибутов
Универсальный селектор
Псевдоклассы
Псевдоэлементы

Кто умеет, тот делает. Кто не умеет, тот учит. Кто не умеет учить - становится деканом. (Т. Мартин)

Группирование
Наследование
Каскадирование
Валидация
Идентификаторы и классы
Написание эффективного кода

Самоучитель CSS

Вёрстка
Изображения
Текст
Цвет
Линии и рамки
Углы
Списки
Ссылки
Дизайны сайтов
Формы
Таблицы
CSS3
HTML5

Новости

Блог для вебмастеров
Новости мира Интернет
Сайтостроение
Ремонт и советы
Все новости

Справочник CSS

Справочник от А до Я
HTML, CSS, JavaScript

Афоризмы

Афоризмы о учёбе
Статьи об афоризмах
Все Афоризмы

Видео Уроки


Наш опрос



Наши новости

      
      
  • 24 марта 2016, 16:20
6-08-2019, 18:00
Новая технология 3D-печати приближает нас к созданию искусственного сердца - «Новости сети»
Рейтинг:


Команда исследователей из Университета Карнеги — Меллона опубликовала статью в журнале Science, в которой подробно описывается разработанная ими методика, позволяющая создавать трёхмерный каркас для биопечати из коллагена, основного структурного белка в организме человека. Новая технология ещё на один шаг приближает науку к возможности 3D-печати полноразмерного сердца взрослого человек.


Информация размещенная на сайте - «hs-design.ru»





Технология FRESH (Freeform Reversible Embedding of Suspended Hydrogels — обратимое встраивание суспендированных гидрогелей в свободной форме) позволила исследователям преодолеть многие проблемы, связанные с существующими методами трехмерной биопечати, и достичь беспрецедентного разрешения и точности с использованием мягких и живых материалов.


Каждый из органов человеческого тела, в том числе сердце, состоит из специализированных клеток, которые удерживаются вместе биологическим каркасом, называемым внеклеточным матриксом (extracellular matrix — ЕСМ). Внеклеточный матрикс представляет собой белковую структуру, которая поддерживает форму органов и обеспечивает функцию биохимических сигналов, необходимых клеткам для нормальной работы. До сих пор создание и перестройка ECM было одним из ключевых препятствий на пути к 3D-печати полноценно функционирующих человеческих органов.


«Мы продемонстрировали, что можем печатать части человеческого сердца из клеток и коллагена, которые действительно работают, например, сердечный клапан или желудочек», — рассказывает Адам Файнберг (Adam Feinberg), профессор биомедицинской инженерии и материаловедение в Университете Карнеги — Меллона. «Используя данные МРТ человеческого сердца, мы смогли точно воспроизвести анатомическую структуру, специфичную для пациента, и напечатать её с использованием коллагена и живых клеток».


Более 4000 пациентов в Соединенных Штатах стоят в очереди на пересадку сердца, в то время как миллионы других людей по всему миру нуждаются в пересадке, но не имеют такой возможности в принципе. Потребность в донорских органах огромна, и медицине чрезвычайно необходим новый подход для создания искусственных органов или их частей, чтобы эту потребность удовлетворить, спасая миллионы жизней. Файнберг и его команда, являясь частью инициативы по биоинженерии человеческих органов Университета Карнеги — Мелоона, работают над решением этой проблемы, используя новое поколение биотехнологий, которые смогут более точно воспроизводить естественные структуры человеческих органов.


Информация размещенная на сайте - «hs-design.ru»





«Коллаген является чрезвычайно необходимым биоматериалом для 3D-печати, потому что он входит в состав буквально каждой ткани в вашем теле», — объясняет Эндрю Хадсон (Andrew Hudson), кандидат биологических наук и студент в лаборатории Фейнберга, а также один из авторов исследования. «Что делает 3D-печать органов настолько трудной, так это то, что она производится с использованием текучих веществ, поэтому, если вы попытаетесь что-либо напечатать просто в воздухе, то получите лужу на вашей платформе. Поэтому мы разработали технологию, которая предотвращает подобную деформацию».


Метод трёхмерной биопечати FRESH, разработанный в лаборатории Файнберга, позволяет наносить коллаген слой за слоем в ёмкость со специальным гелем, используемым для поддержания структуры, давая коллагену время, чтобы застыть и принять необходимую форму. FRESH позволяет растопить структурный гель, просто повысив температуру напечатанного объекта с комнатной до температуры тела, что позволяет очистить напечатанную структуру без каких-либо повреждений, оставив только коллаген и живые клетки.


Этот метод крайне перспективен для 3D-биопечати, потому что он позволяет печатать объёмные коллагеновые структуры в масштабе человеческих органов. И более того, он не ограничивается только коллагеном, позволяя использовать также фибрин, альгинат и гиалуроновую кислоту, обеспечивая надежную и адаптируемую платформу для тканевой инженерии. Важно отметить, что исследователи поделились своими наработками в виде открытого исходного кода, чтобы почти каждый желающий, от работников лабораторий до старшеклассников, мог иметь доступ к недорогим, высокопроизводительным 3D-биопринтерам.


Заглядывая в будущее, FRESH найдёт применение во многих аспектах регенеративной медицины, от заживления ран до биоинженерии органов, но это всего лишь один из инструментов в развивающемся направлении биотехнологий.


«На самом деле мы ведём речь о конвергенции технологий. Важно не только то, что делает моя лаборатория в области биопечати, но также исследования других лабораторий и небольших компаний в области науки о стволовых клетках, машинного обучения и компьютерного моделирования, а также нового аппаратного и программного обеспечения для трехмерной биопечати», — объясняет Фейнберг.


«Нужно понимать, что предстоит ещё много лет исследований», — добавляет Файнберг. «Но всё же мы испытываем определённое волнение, так как добились реального прогресса в печати функциональных тканей и органов человека, и наше исследование ещё один шаг по этому пути».


Ниже вы можете посмотреть видеопрезентацию проекта на английском языке.
Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Команда исследователей из Университета Карнеги — Меллона опубликовала статью в журнале Science, в которой подробно описывается разработанная ими методика, позволяющая создавать трёхмерный каркас для биопечати из коллагена, основного структурного белка в организме человека. Новая технология ещё на один шаг приближает науку к возможности 3D-печати полноразмерного сердца взрослого человек. Информация размещенная на сайте - «hs-design.ru» Технология FRESH (Freeform Reversible Embedding of Suspended Hydrogels — обратимое встраивание суспендированных гидрогелей в свободной форме) позволила исследователям преодолеть многие проблемы, связанные с существующими методами трехмерной биопечати, и достичь беспрецедентного разрешения и точности с использованием мягких и живых материалов. Каждый из органов человеческого тела, в том числе сердце, состоит из специализированных клеток, которые удерживаются вместе биологическим каркасом, называемым внеклеточным матриксом (extracellular matrix — ЕСМ). Внеклеточный матрикс представляет собой белковую структуру, которая поддерживает форму органов и обеспечивает функцию биохимических сигналов, необходимых клеткам для нормальной работы. До сих пор создание и перестройка ECM было одним из ключевых препятствий на пути к 3D-печати полноценно функционирующих человеческих органов. «Мы продемонстрировали, что можем печатать части человеческого сердца из клеток и коллагена, которые действительно работают, например, сердечный клапан или желудочек», — рассказывает Адам Файнберг (Adam Feinberg), профессор биомедицинской инженерии и материаловедение в Университете Карнеги — Меллона. «Используя данные МРТ человеческого сердца, мы смогли точно воспроизвести анатомическую структуру, специфичную для пациента, и напечатать её с использованием коллагена и живых клеток». Более 4000 пациентов в Соединенных Штатах стоят в очереди на пересадку сердца, в то время как миллионы других людей по всему миру нуждаются в пересадке, но не имеют такой возможности в принципе. Потребность в донорских органах огромна, и медицине чрезвычайно необходим новый подход для создания искусственных органов или их частей, чтобы эту потребность удовлетворить, спасая миллионы жизней. Файнберг и его команда, являясь частью инициативы по биоинженерии человеческих органов Университета Карнеги — Мелоона, работают над решением этой проблемы, используя новое поколение биотехнологий, которые смогут более точно воспроизводить естественные структуры человеческих органов. Информация размещенная на сайте - «hs-design.ru» «Коллаген является чрезвычайно необходимым биоматериалом для 3D-печати, потому что он входит в состав буквально каждой ткани в вашем теле», — объясняет Эндрю Хадсон (Andrew Hudson), кандидат биологических наук и студент в лаборатории Фейнберга, а также один из авторов исследования. «Что делает 3D-печать органов настолько трудной, так это то, что она производится с использованием текучих веществ, поэтому, если вы попытаетесь что-либо напечатать просто в воздухе, то получите лужу на вашей платформе. Поэтому мы разработали технологию, которая предотвращает подобную деформацию». Метод трёхмерной биопечати FRESH, разработанный в лаборатории Файнберга, позволяет наносить коллаген слой за слоем в ёмкость со специальным гелем, используемым для поддержания структуры, давая коллагену время, чтобы застыть и принять необходимую форму. FRESH позволяет растопить структурный гель, просто повысив температуру напечатанного объекта с комнатной до температуры тела, что позволяет очистить напечатанную структуру без каких-либо повреждений, оставив только коллаген и живые клетки. Этот метод крайне перспективен для 3D-биопечати, потому что он позволяет печатать объёмные коллагеновые структуры в масштабе человеческих органов. И более того, он не ограничивается только коллагеном, позволяя использовать также фибрин, альгинат и гиалуроновую кислоту, обеспечивая надежную и адаптируемую платформу для тканевой инженерии. Важно отметить, что исследователи поделились своими наработками в виде открытого исходного кода, чтобы почти каждый желающий, от работников лабораторий до старшеклассников, мог иметь доступ к недорогим, высокопроизводительным 3D-биопринтерам. Заглядывая в будущее, FRESH найдёт применение во многих аспектах регенеративной медицины, от заживления ран до биоинженерии органов, но это всего лишь один из инструментов в развивающемся направлении биотехнологий. «На самом деле мы ведём речь о конвергенции технологий. Важно не только то, что делает моя лаборатория в области биопечати, но также исследования других лабораторий и небольших компаний в области науки о стволовых клетках, машинного обучения и компьютерного моделирования, а также нового аппаратного и программного обеспечения для трехмерной биопечати», — объясняет Фейнберг. «Нужно понимать, что предстоит ещё много лет исследований», — добавляет Файнберг. «Но всё же мы испытываем определённое волнение, так как добились реального прогресса в печати функциональных тканей и органов человека, и наше исследование ещё один шаг по этому пути». Ниже вы можете посмотреть видеопрезентацию проекта на английском языке.
Просмотров: 533
Комментариев: 0:   6-08-2019, 18:00
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 
Еще новости по теме:



Другие новости по теме: