42 наконец-то разложили на три куба - «Интернет и связь»
Меню
Наши новости
Учебник CSS

Невозможно отучить людей изучать самые ненужные предметы.

Введение в CSS
Преимущества стилей
Добавления стилей
Типы носителей
Базовый синтаксис
Значения стилевых свойств
Селекторы тегов
Классы
CSS3

Надо знать обо всем понемножку, но все о немногом.

Идентификаторы
Контекстные селекторы
Соседние селекторы
Дочерние селекторы
Селекторы атрибутов
Универсальный селектор
Псевдоклассы
Псевдоэлементы

Кто умеет, тот делает. Кто не умеет, тот учит. Кто не умеет учить - становится деканом. (Т. Мартин)

Группирование
Наследование
Каскадирование
Валидация
Идентификаторы и классы
Написание эффективного кода

Самоучитель CSS

Вёрстка
Изображения
Текст
Цвет
Линии и рамки
Углы
Списки
Ссылки
Дизайны сайтов
Формы
Таблицы
CSS3
HTML5

Новости

Блог для вебмастеров
Новости мира Интернет
Сайтостроение
Ремонт и советы
Все новости

Справочник CSS

Справочник от А до Я
HTML, CSS, JavaScript

Афоризмы

Афоризмы о учёбе
Статьи об афоризмах
Все Афоризмы

Видео Уроки


Наш опрос



Наши новости

      
      
  • 24 марта 2016, 16:20
1-01-2006, 03:00
42 наконец-то разложили на три куба - «Интернет и связь»
Рейтинг:

Число 42 известно не только тем, что является ответом на «Главный вопрос жизни, Вселенной и всего такого», но также тем, что было последним натуральным числом меньше 100, которое не удавалось разложить в сумму трех кубов. Теперь этот вопрос решен, пишет N+1.


42 наконец-то разложили на три куба  - «Интернет и связь»

Математики Эндрю Букер и Эндрю Сазерленд нашли нужное выражение: 42 = (-80538738812075974)3 + 804357581458175153 + 126021232973356313, решение опубликовано на странице одного из математиков (в коде страницы есть ссылки на его работы, а с сайта факультета математики на личную страницу ведет прямая ссылка).


Уравнения, неизвестными в которых могут быть только целые числа, в математике называют диофантовыми — по имени древнегреческого мыслителя, занимавшегося ими. Несмотря на кажущуюся простоту и доступность для понимания даже ученику средней школы, диофантовы уравнения могут быть исключительно трудными для решения.


Самым известным диофантовым уравнением, безусловно, является Великая теорема Ферма xn+yn = zn для целых n>2. Это утверждение доказал в 1994 году Эндрю Уайлс спустя более 350 лет после оригинальной формулировки. Доказательство использует методы отнюдь не элементарной математики и занимает свыше 100 страниц.


Одной из открытых задач в области диофантовых уравнений является разложение натуральных чисел в сумму трех кубов целых, то есть решение уравнение вида k = x3+y3+z3 для разных k. Известно, что для k, дающих при делении на 9 в остатке 4 или 5, подобных разложений быть не может, поэтому они исключаются из рассмотрения. Гипотезой является то, что все другие k можно разложить в такую сумму.


Интересной особенностью данной задачи является чередование очень простых решений и чрезвычайно сложных. Например, для k = 29 существует очевидное решение x=3, y=z=1, в то время как для k=30 решение достигается лишь при гигантских значениях x = 3?982?933?876?681, y = -636600549515 и z = -3977505554546.


В течение второй половины XX века разложения в сумму трех кубов были найдены почти для всех искомых чисел меньше 100. В частности, в 60-е были найдены разложения для 87, 96, 91 и 80, затем для 39, 75 и 84, потом для 30, 52 и 74. К 2019 году оставалось лишь два числа: 33 и 42. Для 33 решение было найдено Эндрю Букером (Andrew Booker) из Бристольского университета весной этого года.


Теперь вместе с Эндрю Сазерлендом (Andrew Sutherland) из Массачусетского технологического института Букер нашел решение и для числа 42. Его разложение выглядит следующим образом: 42 = (-80538738812075974)3 + 804357581458175153 + 126021232973356313. Проверить правильность этого выражения с помощью обычных калькуляторов может быть затруднительно, но можно воспользоваться вычислениями онлайн с помощью WolframAlpha.


Теперь наименьшим числом, не разложенным на три куба, стало 114. Среди чисел меньших тысячи таких чисел, кстати, тоже остается не очень много: 165, 390, 579, 627, 633, 732, 795, 906, 921 и 975. Доказательство Великой теоремы Ферма весьма поучительно.


Новости по теме

Ученые, сделавшие первое фото черной дыры, получили три миллиона долларов

Вы левша или правша? Эта информация есть в вашей ДНК

Хотите быть здоровее? Есть смысл отказаться от одного напитка



Если вы заметили ошибку в тексте новости, пожалуйста, выделите её и нажмите Ctrl+Enter

Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Число 42 известно не только тем, что является ответом на «Главный вопрос жизни, Вселенной и всего такого», но также тем, что было последним натуральным числом меньше 100, которое не удавалось разложить в сумму трех кубов. Теперь этот вопрос решен, пишет N 1. Математики Эндрю Букер и Эндрю Сазерленд нашли нужное выражение: 42 = (-80538738812075974)3 804357581458175153 126021232973356313, решение опубликовано на странице одного из математиков (в коде страницы есть ссылки на его работы, а с сайта факультета математики на личную страницу ведет прямая ссылка). Уравнения, неизвестными в которых могут быть только целые числа, в математике называют диофантовыми — по имени древнегреческого мыслителя, занимавшегося ими. Несмотря на кажущуюся простоту и доступность для понимания даже ученику средней школы, диофантовы уравнения могут быть исключительно трудными для решения. Самым известным диофантовым уравнением, безусловно, является Великая теорема Ферма xn yn = zn для целых n
Просмотров: 394
Комментариев: 0:   1-01-2006, 03:00
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 
Еще новости по теме:



Другие новости по теме: