Русско-японский графеновый материал принципиально улучшает флеш-память - «Новости сети»
Меню
Наши новости
Учебник CSS

Невозможно отучить людей изучать самые ненужные предметы.

Введение в CSS
Преимущества стилей
Добавления стилей
Типы носителей
Базовый синтаксис
Значения стилевых свойств
Селекторы тегов
Классы
CSS3

Надо знать обо всем понемножку, но все о немногом.

Идентификаторы
Контекстные селекторы
Соседние селекторы
Дочерние селекторы
Селекторы атрибутов
Универсальный селектор
Псевдоклассы
Псевдоэлементы

Кто умеет, тот делает. Кто не умеет, тот учит. Кто не умеет учить - становится деканом. (Т. Мартин)

Группирование
Наследование
Каскадирование
Валидация
Идентификаторы и классы
Написание эффективного кода

Самоучитель CSS

Вёрстка
Изображения
Текст
Цвет
Линии и рамки
Углы
Списки
Ссылки
Дизайны сайтов
Формы
Таблицы
CSS3
HTML5

Новости

Блог для вебмастеров
Новости мира Интернет
Сайтостроение
Ремонт и советы
Все новости

Справочник CSS

Справочник от А до Я
HTML, CSS, JavaScript

Афоризмы

Афоризмы о учёбе
Статьи об афоризмах
Все Афоризмы

Видео Уроки


Видео уроки
Наш опрос



Наши новости

       
27-01-2020, 00:21
Русско-японский графеновый материал принципиально улучшает флеш-память - «Новости сети»
Рейтинг:


Группа учёных Национального исследовательского технологического университета «Московский институт стали и сплавов» и Национального института квантовых наук и радиологии (Япония) разработала материал, способный существенно увеличить плотность записываемой информации на флеш-накопители.



Новый материал также полностью снимает лимит перезаписи, что позволит внедрить устройства на его основе в актуальную технологию Big Data. Учёные использовали комбинацию из графена и полуметаллического сплава Гейслера Co2FeGaGe (кобальт-железо-галлий-германий). Статья о его разработке опубликована в журнале Advanced Materials.


Сегодня традиционными являются накопители, где информация переносится электрическим током — это флеш-карты, SSD и HDD. Многообещающей альтернативой является спинтроника, где управление информацией реализуется не только посредством заряда электронов, но и при помощи тока спинов — собственных моментов импульса электронов.



В спинтронике устройства работают на принципе магнитного сопротивления: имеются три слоя, первый и третий из которых ферромагнитные, а средний — немагнитный. Проходя через такую структуру, электроны, в зависимости от их спина, по-разному рассеиваются, что влияет на результирующее сопротивление. Увеличение или уменьшение магнитного сопротивления позволяет управлять информацией при помощи стандартных логических битов 0 и 1.


Ранее в устройствах магнитной памяти не использовался графен: при попытках изготовления таких слоистых материалов атомы углерода вступали в реакцию с магнитным слоем, что приводило к изменению его свойств. Благодаря тщательному подбору состава сплава Гейслера, а также методов его нанесения, удалось создать более тонкий образец по сравнению с предшествующими аналогами. Это, в свою очередь, существенно повысило ёмкость устройств магнитной памяти без увеличения их физических размеров.



«Данная работа стала возможна благодаря тесному международному взаимодействию. Японский коллектив, возглавляемый доктором Сейджи Сакаем, проводит уникальные эксперименты, в то время как наша группа занимается теоретическим описанием полученных данных. Мы сотрудничаем уже много лет и получили ряд важных результатов. Японским коллегам впервые удалось получить слой графена атомарной толщины на слое полуметаллического ферромагнитного материала и измерить его свойства, — пояснил руководитель научной группы доктор физико-математических наук Павел Сорокин.


Особенность используемого в гетероструктуре сплава проявляется в стопроцентной спиновой поляризации на уровне Ферми, что является необходимым условием для использования его в спинтронных устройствах», — добавил научный сотрудник Константин Ларионов.



«В исследованной нами гетероструктуре графен не вступает в химическое взаимодействие с магнитным материалом, что позволяет сохранить его уникальные проводящие свойства», — заключил старший научный сотрудник Захар Попов.


Следующие шаги ученых — масштабирование экспериментального образца и дальнейшая модификация структуры элемента.

Группа учёных Национального исследовательского технологического университета «Московский институт стали и сплавов» и Национального института квантовых наук и радиологии (Япония) разработала материал, способный существенно увеличить плотность записываемой информации на флеш-накопители. Новый материал также полностью снимает лимит перезаписи, что позволит внедрить устройства на его основе в актуальную технологию Big Data. Учёные использовали комбинацию из графена и полуметаллического сплава Гейслера Co2FeGaGe (кобальт-железо-галлий-германий). Статья о его разработке опубликована в журнале Advanced Materials. Сегодня традиционными являются накопители, где информация переносится электрическим током — это флеш-карты, SSD и HDD. Многообещающей альтернативой является спинтроника, где управление информацией реализуется не только посредством заряда электронов, но и при помощи тока спинов — собственных моментов импульса электронов. В спинтронике устройства работают на принципе магнитного сопротивления: имеются три слоя, первый и третий из которых ферромагнитные, а средний — немагнитный. Проходя через такую структуру, электроны, в зависимости от их спина, по-разному рассеиваются, что влияет на результирующее сопротивление. Увеличение или уменьшение магнитного сопротивления позволяет управлять информацией при помощи стандартных логических битов 0 и 1. Ранее в устройствах магнитной памяти не использовался графен: при попытках изготовления таких слоистых материалов атомы углерода вступали в реакцию с магнитным слоем, что приводило к изменению его свойств. Благодаря тщательному подбору состава сплава Гейслера, а также методов его нанесения, удалось создать более тонкий образец по сравнению с предшествующими аналогами. Это, в свою очередь, существенно повысило ёмкость устройств магнитной памяти без увеличения их физических размеров. «Данная работа стала возможна благодаря тесному международному взаимодействию. Японский коллектив, возглавляемый доктором Сейджи Сакаем, проводит уникальные эксперименты, в то время как наша группа занимается теоретическим описанием полученных данных. Мы сотрудничаем уже много лет и получили ряд важных результатов. Японским коллегам впервые удалось получить слой графена атомарной толщины на слое полуметаллического ферромагнитного материала и измерить его свойства, — пояснил руководитель научной группы доктор физико-математических наук Павел Сорокин. Особенность используемого в гетероструктуре сплава проявляется в стопроцентной спиновой поляризации на уровне Ферми, что является необходимым условием для использования его в спинтронных устройствах», — добавил научный сотрудник Константин Ларионов. «В исследованной нами гетероструктуре графен не вступает в химическое взаимодействие с магнитным материалом, что позволяет сохранить его уникальные проводящие свойства», — заключил старший научный сотрудник Захар Попов. Следующие шаги ученых — масштабирование экспериментального образца и дальнейшая модификация структуры элемента.

Теги: Новости сети, сплава сотрудник материал также устройства

Просмотров: 432
Комментариев: 0:   27-01-2020, 00:21
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 
Еще новости по теме:



Другие новости по теме:
Комментарии для сайта Cackle