•
Если человек ощущает свое участие в жизни общества, он создает не только материальные ценности для людей - он создает и самого себя. Из работы, в которой ярко выражен дух гражданственности, начинается истинное самовоспитание.
Афоризмы
•
Поистине, подобно солнцу, люблю я жизнь и все глубокие моря. И вот что называю я познанием: чтобы все глубокое поднялось на высоту мою!
Афоризмы
•
- «Оставайтесь голодными. Оставайтесь безрассудными». И я всегда желал себе этого. И теперь, когда вы заканчиваете институт и начинаете заново, я желаю этого вам.
Афоризмы
•
Воспитание личности - это воспитание такого стойкого морального начала, благодаря которому человек сам становится источником благотворного влияния на других, сам воспитывается и в процессе самовоспитания еще более утверждает в себе собственное моральное начало.
Афоризмы
Сегодня
• Кто много знает, с того много и спрашивается.
• Не учись до старости, а учись до смерти.
• Без терпенья нет ученья.
• Знание лучше богатства.
• Учи показом, а не рассказом.
• Не для знания, а для экзамена.
• Знание — сила.
• Без муки нет и науки.
• Всему учен, только не изловчен.
• Велико ли перо, а большие книги пишет.
• Перо пишет, а ум водит.
• Не бойся, когда не знаешь: страшно, когда знать не хочется.
• Учение — путь к умению.
• Много ученых, мало смышленных.
• Наука учит только умного.
• Учи других — и сам поймешь.
• На все руки, кроме науки.
• Наукой люди кормятся.
• Писать — не языком чесать.
• От учителя наука.
• И медведя плясать учат.
• Не пером пишут — умом.
• Мудрым ни кто не родился, а научился.
• Корень учения горек, да плод его сладок.
Меню
Наши новости
Учебник CSS
Невозможно отучить людей изучать самые ненужные предметы.
Саудовские учёные провели ряд экспериментов с солнечными элементами в виде небольшой сферы. Круглая форма фотопреобразователя позволяет лучше улавливать отражённый и рассеянный солнечный свет. Для промышленных солнечных ферм это вряд ли разумное решение, но для целого ряда применений круглые солнечные элементы могут оказаться настоящей находкой.
Информация размещенная на сайте - «hs-design.ru»
Группа учёных из Научно-технологического университета имени короля Абдаллы (King Abdullah University of Science and Technology) расширила область своих разработок по созданию солнечных панелей с разной степенью кривизны поверхности новым исследованием. В частности, они собрали солнечный элемент в виде сферы размером с теннисный мяч и провели с ним множество экспериментов. Это позволила сделать технология «гофрирования» плоских солнечных панелей, которая заключается в том, что лазером создаются канавки в кремниевой подложке, которые служат местом безопасного изгиба панелей.
Сравнение работы плоского и сферического элемента одинаковой площади в условиях помещения с искусственным источником солнечного излучения показало, что при прямом освещении сферический солнечный элемент обеспечивает на 24 % большую выходную мощность по сравнению с традиционным плоским солнечным элементом. После нагрева элементов «солнечными лучами» рост преимущества круглого элемента поднимается до 39 %. Это связано с тем, что нагрев снижает КПД панелей, а сферическая форма лучше отдаёт тепло пространству и меньше страдает от нагрева (дольше сохраняет высокое значение КПД).
Если круглый и плоский солнечные элементы собирали исключительно рассеянный свет, то выход мощности с круглого элемента был на 60 % больше, чем получалось от плоского. Более того, правильно подобранный отражающий фон, а учёные экспериментировали с различными природными и искусственными материалами отражателей, давал возможность сферическому солнечному элементу по уровню вырабатываемой энергии опережать плоский на 100 %.
По мнению исследователей, сферические солнечные элементы могут дать толчок развитию Интернета вещей и другой автономной электроники. В комплексе они обещают оказаться дешевле использования плоских солнечных элементов. Круглым солнечным панелям не нужны системы слежения за солнцем. Также они могут оказаться лучше при использовании в помещениях.
На следующем этапе исследований учёные собираются проверить эффективность круглых солнечных панелей в разных уголках Земли в широком спектре возможного освещения. Также они надеются создать сферические солнечные элементы большой площади: от 9 до 90 м2. Наконец, учёные собираются исследовать другие формы искривлённой поверхности солнечных элементов, надеясь найти идеальное решение для конкретных областей применения.
Саудовские учёные провели ряд экспериментов с солнечными элементами в виде небольшой сферы. Круглая форма фотопреобразователя позволяет лучше улавливать отражённый и рассеянный солнечный свет. Для промышленных солнечных ферм это вряд ли разумное решение, но для целого ряда применений круглые солнечные элементы могут оказаться настоящей находкой. Информация размещенная на сайте - «hs-design.ru» Группа учёных из Научно-технологического университета имени короля Абдаллы (King Abdullah University of Science and Technology) расширила область своих разработок по созданию солнечных панелей с разной степенью кривизны поверхности новым исследованием. В частности, они собрали солнечный элемент в виде сферы размером с теннисный мяч и провели с ним множество экспериментов. Это позволила сделать технология «гофрирования» плоских солнечных панелей, которая заключается в том, что лазером создаются канавки в кремниевой подложке, которые служат местом безопасного изгиба панелей. Сравнение работы плоского и сферического элемента одинаковой площади в условиях помещения с искусственным источником солнечного излучения показало, что при прямом освещении сферический солнечный элемент обеспечивает на 24 % большую выходную мощность по сравнению с традиционным плоским солнечным элементом. После нагрева элементов «солнечными лучами» рост преимущества круглого элемента поднимается до 39 %. Это связано с тем, что нагрев снижает КПД панелей, а сферическая форма лучше отдаёт тепло пространству и меньше страдает от нагрева (дольше сохраняет высокое значение КПД). Если круглый и плоский солнечные элементы собирали исключительно рассеянный свет, то выход мощности с круглого элемента был на 60 % больше, чем получалось от плоского. Более того, правильно подобранный отражающий фон, а учёные экспериментировали с различными природными и искусственными материалами отражателей, давал возможность сферическому солнечному элементу по уровню вырабатываемой энергии опережать плоский на 100 %. По мнению исследователей, сферические солнечные элементы могут дать толчок развитию Интернета вещей и другой автономной электроники. В комплексе они обещают оказаться дешевле использования плоских солнечных элементов. Круглым солнечным панелям не нужны системы слежения за солнцем. Также они могут оказаться лучше при использовании в помещениях. На следующем этапе исследований учёные собираются проверить эффективность круглых солнечных панелей в разных уголках Земли в широком спектре возможного освещения. Также они надеются создать сферические солнечные элементы большой площади: от 9 до 90 м2. Наконец, учёные собираются исследовать другие формы искривлённой поверхности солнечных элементов, надеясь найти идеальное решение для конкретных областей применения.