•
Если человек ощущает свое участие в жизни общества, он создает не только материальные ценности для людей - он создает и самого себя. Из работы, в которой ярко выражен дух гражданственности, начинается истинное самовоспитание.
Афоризмы
•
Поистине, подобно солнцу, люблю я жизнь и все глубокие моря. И вот что называю я познанием: чтобы все глубокое поднялось на высоту мою!
Афоризмы
•
- «Оставайтесь голодными. Оставайтесь безрассудными». И я всегда желал себе этого. И теперь, когда вы заканчиваете институт и начинаете заново, я желаю этого вам.
Афоризмы
•
Воспитание личности - это воспитание такого стойкого морального начала, благодаря которому человек сам становится источником благотворного влияния на других, сам воспитывается и в процессе самовоспитания еще более утверждает в себе собственное моральное начало.
Афоризмы
Сегодня
• Кто много знает, с того много и спрашивается.
• Не учись до старости, а учись до смерти.
• Без терпенья нет ученья.
• Знание лучше богатства.
• Учи показом, а не рассказом.
• Не для знания, а для экзамена.
• Знание — сила.
• Без муки нет и науки.
• Всему учен, только не изловчен.
• Велико ли перо, а большие книги пишет.
• Перо пишет, а ум водит.
• Не бойся, когда не знаешь: страшно, когда знать не хочется.
• Учение — путь к умению.
• Много ученых, мало смышленных.
• Наука учит только умного.
• Учи других — и сам поймешь.
• На все руки, кроме науки.
• Наукой люди кормятся.
• Писать — не языком чесать.
• От учителя наука.
• И медведя плясать учат.
• Не пером пишут — умом.
• Мудрым ни кто не родился, а научился.
• Корень учения горек, да плод его сладок.
Меню
Наши новости
Учебник CSS
Невозможно отучить людей изучать самые ненужные предметы.
Летающие дроны могут массово войти в нашу повседневную жизнь только в том случае, если они будут маленькими и недорогими. Помешать этому может только одно - сильнейшая восприимчивость к порывам ветра и к турбулентности вокруг препятствий. Что с этим делать? Снова подсмотреть ответ у природы.
Информация размещенная на сайте - «hs-design.ru»
На этой неделе исследователи из Университета Брауна и Федеральной политехнической школы Лозанны (EPFL) опубликовали в журнале Science Robotics статью, в которой рассказали о разработке и испытании новой конструкции крыла (статья на английском языке полностью доступна по этой ссылке). На этом крыле 100-граммовый прототип малого воздушного беспилотного аппарата может летать почти 3 часа, что в четыре раза дольше времени полёта аналогичных по массогабаритным характеристикам дронов с обычными крыльями.
Конструкция чудесного крыла подсмотрена учёными у насекомых и маленьких птиц. Эта категория летунов не может похвастаться размахом крыльев и, тем не менее, они не боятся ветра, турбулентности и летают предельно эффективно для своих размеров.
При ровном горизонтальном полёте подъёмная сила возникает на так называемом ламинарном потоке воздуха. Для этого профиль крыла должен быть обтекаемым и гладким, чтобы не возник срыв потока и турбулентность. Турбулентность над крылом - это срыв потока, штопор и обломки на земле. Но у насекомых и маленьких птиц, как выяснилось, профиль крыльев специально создаёт турбулентность, что позволяет им спокойно переносить внешнюю турбулентность при пролёте рядом с землёй, объектами или в ветреную погоду.
Информация размещенная на сайте - «hs-design.ru»
Спроектированное для малых дронов крыло имеет квадратную кромку - именно она создаёт турбулентность над первой половиной крыла. Дальше благодаря закрылкам поток воздуха выравнивается и создаёт подъёмную силу. Это не даёт аппарату сорваться. За счёт широкого крыла на нём можно разместить аккумуляторы и управляющую электронику, что делает ненужным фюзеляж. Продолжение крыла за несущим винтом (на месте бывшего фюзеляжа) создаёт дополнительные 20–30 % подъёмной силы, а это не шутка для такого аппарата.
Почему никто раньше не предложил такое крыло? Исследователи считают, что современные инструменты моделирования не могут хорошо справиться со сложной аэродинамикой крыла со срывом потока. Оптимизировать дизайн оказалось сложно даже во время испытаний в аэродинамической трубе. Тем не менее, полученный результат раскрывает потенциал для стабильного полёта небольших беспилотных аппаратов даже в условиях турбулентности с массой полезной нагрузки на широких крыльях.
Летающие дроны могут массово войти в нашу повседневную жизнь только в том случае, если они будут маленькими и недорогими. Помешать этому может только одно - сильнейшая восприимчивость к порывам ветра и к турбулентности вокруг препятствий. Что с этим делать? Снова подсмотреть ответ у природы. Информация размещенная на сайте - «hs-design.ru» На этой неделе исследователи из Университета Брауна и Федеральной политехнической школы Лозанны (EPFL) опубликовали в журнале Science Robotics статью, в которой рассказали о разработке и испытании новой конструкции крыла (статья на английском языке полностью доступна по этой ссылке). На этом крыле 100-граммовый прототип малого воздушного беспилотного аппарата может летать почти 3 часа, что в четыре раза дольше времени полёта аналогичных по массогабаритным характеристикам дронов с обычными крыльями. Конструкция чудесного крыла подсмотрена учёными у насекомых и маленьких птиц. Эта категория летунов не может похвастаться размахом крыльев и, тем не менее, они не боятся ветра, турбулентности и летают предельно эффективно для своих размеров. При ровном горизонтальном полёте подъёмная сила возникает на так называемом ламинарном потоке воздуха. Для этого профиль крыла должен быть обтекаемым и гладким, чтобы не возник срыв потока и турбулентность. Турбулентность над крылом - это срыв потока, штопор и обломки на земле. Но у насекомых и маленьких птиц, как выяснилось, профиль крыльев специально создаёт турбулентность, что позволяет им спокойно переносить внешнюю турбулентность при пролёте рядом с землёй, объектами или в ветреную погоду. Информация размещенная на сайте - «hs-design.ru» Спроектированное для малых дронов крыло имеет квадратную кромку - именно она создаёт турбулентность над первой половиной крыла. Дальше благодаря закрылкам поток воздуха выравнивается и создаёт подъёмную силу. Это не даёт аппарату сорваться. За счёт широкого крыла на нём можно разместить аккумуляторы и управляющую электронику, что делает ненужным фюзеляж. Продолжение крыла за несущим винтом (на месте бывшего фюзеляжа) создаёт дополнительные 20–30 % подъёмной силы, а это не шутка для такого аппарата. Почему никто раньше не предложил такое крыло? Исследователи считают, что современные инструменты моделирования не могут хорошо справиться со сложной аэродинамикой крыла со срывом потока. Оптимизировать дизайн оказалось сложно даже во время испытаний в аэродинамической трубе. Тем не менее, полученный результат раскрывает потенциал для стабильного полёта небольших беспилотных аппаратов даже в условиях турбулентности с массой полезной нагрузки на широких крыльях.