•
Если человек ощущает свое участие в жизни общества, он создает не только материальные ценности для людей - он создает и самого себя. Из работы, в которой ярко выражен дух гражданственности, начинается истинное самовоспитание.
Афоризмы
•
Поистине, подобно солнцу, люблю я жизнь и все глубокие моря. И вот что называю я познанием: чтобы все глубокое поднялось на высоту мою!
Афоризмы
•
- «Оставайтесь голодными. Оставайтесь безрассудными». И я всегда желал себе этого. И теперь, когда вы заканчиваете институт и начинаете заново, я желаю этого вам.
Афоризмы
•
Воспитание личности - это воспитание такого стойкого морального начала, благодаря которому человек сам становится источником благотворного влияния на других, сам воспитывается и в процессе самовоспитания еще более утверждает в себе собственное моральное начало.
Афоризмы
Сегодня
• Кто много знает, с того много и спрашивается.
• Не учись до старости, а учись до смерти.
• Без терпенья нет ученья.
• Знание лучше богатства.
• Учи показом, а не рассказом.
• Не для знания, а для экзамена.
• Знание — сила.
• Без муки нет и науки.
• Всему учен, только не изловчен.
• Велико ли перо, а большие книги пишет.
• Перо пишет, а ум водит.
• Не бойся, когда не знаешь: страшно, когда знать не хочется.
• Учение — путь к умению.
• Много ученых, мало смышленных.
• Наука учит только умного.
• Учи других — и сам поймешь.
• На все руки, кроме науки.
• Наукой люди кормятся.
• Писать — не языком чесать.
• От учителя наука.
• И медведя плясать учат.
• Не пером пишут — умом.
• Мудрым ни кто не родился, а научился.
• Корень учения горек, да плод его сладок.
Меню
Наши новости
Учебник CSS
Невозможно отучить людей изучать самые ненужные предметы.
Команда исследователей под руководством российских специалистов создала сверхточную «квантовую линейку», позволяющую измерять расстояние в сотни километров с точностью до миллиардных долей метра.
В работе принимали участие физики из Российского квантового центра, МФТИ, ФИАНа и парижского Института оптики. Речь идёт о формировании особого состояния квантовой запутанности. Предложенная техника позволяет использовать квантовые эффекты для повышения точности измерения расстояния между наблюдателями, которые отделены друг от друга средой с потерями.
Предметом исследований стали так называемые N00N-состояния фотонов, в которых возникает суперпозиция пространственных положений не одного фотона, а сразу множества. То есть многофотонный лазерный импульс одновременно находится в двух точках пространства.
В оптических интерферометрах лучи лазера, приходящие от двух зеркал, «смешиваются» друг с другом, и возникает интерференция — волны света, накладываясь, либо гасят друг друга, либо усиливают — в зависимости от точного положения зеркал. Это позволяет измерять их микроскопические смещения, потому что расстояние между полосами равно длине волны — примерно 0,5–1 микрона. Однако для многих экспериментов нужна ещё более высокая точность. Например, для обнаружения гравитационных волн требовалось измерять смещения, сопоставимые с диаметром протона.
Именно в таких ситуациях могут пригодиться N00N-состояния, поскольку при интерференции они создают полосы, расстояния между которыми много меньше длины волны. Соответственно, повышается и точность измерения расстояний. Однако проблема заключается в том, что N00N-состояния чрезвычайно чувствительны к потерям. Обойти трудность группе исследователей удалось за счёт обмена запутанностями. Подробнее об исследовании можно узнать здесь.
Команда исследователей под руководством российских специалистов создала сверхточную «квантовую линейку», позволяющую измерять расстояние в сотни километров с точностью до миллиардных долей метра. В работе принимали участие физики из Российского квантового центра, МФТИ, ФИАНа и парижского Института оптики. Речь идёт о формировании особого состояния квантовой запутанности. Предложенная техника позволяет использовать квантовые эффекты для повышения точности измерения расстояния между наблюдателями, которые отделены друг от друга средой с потерями. Предметом исследований стали так называемые N00N-состояния фотонов, в которых возникает суперпозиция пространственных положений не одного фотона, а сразу множества. То есть многофотонный лазерный импульс одновременно находится в двух точках пространства. В оптических интерферометрах лучи лазера, приходящие от двух зеркал, «смешиваются» друг с другом, и возникает интерференция — волны света, накладываясь, либо гасят друг друга, либо усиливают — в зависимости от точного положения зеркал. Это позволяет измерять их микроскопические смещения, потому что расстояние между полосами равно длине волны — примерно 0,5–1 микрона. Однако для многих экспериментов нужна ещё более высокая точность. Например, для обнаружения гравитационных волн требовалось измерять смещения, сопоставимые с диаметром протона. Именно в таких ситуациях могут пригодиться N00N-состояния, поскольку при интерференции они создают полосы, расстояния между которыми много меньше длины волны. Соответственно, повышается и точность измерения расстояний. Однако проблема заключается в том, что N00N-состояния чрезвычайно чувствительны к потерям. Обойти трудность группе исследователей удалось за счёт обмена запутанностями. Подробнее об исследовании можно узнать здесь.