•
Если человек ощущает свое участие в жизни общества, он создает не только материальные ценности для людей - он создает и самого себя. Из работы, в которой ярко выражен дух гражданственности, начинается истинное самовоспитание.
Афоризмы
•
Поистине, подобно солнцу, люблю я жизнь и все глубокие моря. И вот что называю я познанием: чтобы все глубокое поднялось на высоту мою!
Афоризмы
•
- «Оставайтесь голодными. Оставайтесь безрассудными». И я всегда желал себе этого. И теперь, когда вы заканчиваете институт и начинаете заново, я желаю этого вам.
Афоризмы
•
Воспитание личности - это воспитание такого стойкого морального начала, благодаря которому человек сам становится источником благотворного влияния на других, сам воспитывается и в процессе самовоспитания еще более утверждает в себе собственное моральное начало.
Афоризмы
Сегодня
• Кто много знает, с того много и спрашивается.
• Не учись до старости, а учись до смерти.
• Без терпенья нет ученья.
• Знание лучше богатства.
• Учи показом, а не рассказом.
• Не для знания, а для экзамена.
• Знание — сила.
• Без муки нет и науки.
• Всему учен, только не изловчен.
• Велико ли перо, а большие книги пишет.
• Перо пишет, а ум водит.
• Не бойся, когда не знаешь: страшно, когда знать не хочется.
• Учение — путь к умению.
• Много ученых, мало смышленных.
• Наука учит только умного.
• Учи других — и сам поймешь.
• На все руки, кроме науки.
• Наукой люди кормятся.
• Писать — не языком чесать.
• От учителя наука.
• И медведя плясать учат.
• Не пером пишут — умом.
• Мудрым ни кто не родился, а научился.
• Корень учения горек, да плод его сладок.
Меню
Наши новости
Учебник CSS
Невозможно отучить людей изучать самые ненужные предметы.
Исследователи из Московского физико-технического института (МФТИ) создали прототипы наноразмерных «электронных синапсов» на основе сверхтонких плёнок оксида гафния. Достижение в перспективе может привести к появлению принципиально новых вычислительных систем.
Группа учёных из МФТИ изготовила мемристоры на основе тонкоплёночного оксида гафния размером всего 40 × 40 нм. При этом созданные наноустройства проявляют свойства, аналогичные биологическим синапсам. С помощью разработанной технологии мемристоры были объединены в матрицы: в перспективе это позволит создавать компьютеры, работающие на принципах биологических нейронных сетей.
Синапс — это место соединения нейронов, основная функция которого — передача сигнала (так называемого «спайка», или сигнала определённого вида) от одного нейрона к другому. Каждый нейрон может иметь тысячи синапсов, то есть связываться с огромным числом других нейронов. Это позволяет обрабатывать информацию не в последовательном (как делают современные компьютеры), а в параллельном режиме. Именно в этом, по мнению специалистов, кроется причина столь фантастической эффективности «живых» нейронных сетей.
Синапсы могут со временем изменять свой «вес», то есть способность передавать сигнал. Это свойство является ключом к пониманию функции памяти и обучаемости мозга. Как и у биологического синапса, величина электрической проводимости мемристора является итогом всей его предыдущей «жизни» — от самого момента изготовления.
Есть несколько физических эффектов, на основе которых можно создавать мемристоры. Российские исследователи использовали устройства на основе тонкоплёночного оксида гафния, в которых наблюдается эффект обратимого электрического пробоя под действием приложенного электрического поля. Чаще всего в таких устройствах используют только два разных состояния, кодирующих логические ноль и единицу. Однако для имитации биологических синапсов необходимо было реализовать непрерывный набор проводимостей в изготовленных устройствах.
На созданных «аналоговых» мемристорах учёные смоделировали несколько механизмов обучения («пластичность») биологических синапсов. В частности, речь идёт о таких функциях, как долговременное усиление или ослабление связи между двумя нейронами. Общепринято, что именно эти явления лежат в основе механизмов памяти.
Информация размещенная на сайте - «hs-design.ru»
Кроме того, специалистам удалось продемонстрировать более сложный механизм — так называемую временную пластичность («spike-timing-dependent plasticity»), то есть зависимость величины связи между нейронами от относительного времени их «срабатывания». Ранее было показано, что именно этот механизм отвечает за ассоциативное обучение — способности мозга находить связи между разными событиями.
При этом для демонстрации такой функции в своих мемристорных устройствах авторы специально использовали электрические сигналы, подаваемые на электроды мемристоров, по форме воспроизводящие сигналы в живых нейронах, и получили зависимость, очень похожую на те, которые наблюдаются в живых синапсах.
Таким образом, как утверждается, созданные элементы можно рассматривать как прототип «электронного синапса», на основе которого можно создавать искусственные нейронные сети «в железе».
Исследователи из Московского физико-технического института (МФТИ) создали прототипы наноразмерных «электронных синапсов» на основе сверхтонких плёнок оксида гафния. Достижение в перспективе может привести к появлению принципиально новых вычислительных систем. Группа учёных из МФТИ изготовила мемристоры на основе тонкоплёночного оксида гафния размером всего 40 × 40 нм. При этом созданные наноустройства проявляют свойства, аналогичные биологическим синапсам. С помощью разработанной технологии мемристоры были объединены в матрицы: в перспективе это позволит создавать компьютеры, работающие на принципах биологических нейронных сетей. Синапс — это место соединения нейронов, основная функция которого — передача сигнала (так называемого «спайка», или сигнала определённого вида) от одного нейрона к другому. Каждый нейрон может иметь тысячи синапсов, то есть связываться с огромным числом других нейронов. Это позволяет обрабатывать информацию не в последовательном (как делают современные компьютеры), а в параллельном режиме. Именно в этом, по мнению специалистов, кроется причина столь фантастической эффективности «живых» нейронных сетей. Синапсы могут со временем изменять свой «вес», то есть способность передавать сигнал. Это свойство является ключом к пониманию функции памяти и обучаемости мозга. Как и у биологического синапса, величина электрической проводимости мемристора является итогом всей его предыдущей «жизни» — от самого момента изготовления. Есть несколько физических эффектов, на основе которых можно создавать мемристоры. Российские исследователи использовали устройства на основе тонкоплёночного оксида гафния, в которых наблюдается эффект обратимого электрического пробоя под действием приложенного электрического поля. Чаще всего в таких устройствах используют только два разных состояния, кодирующих логические ноль и единицу. Однако для имитации биологических синапсов необходимо было реализовать непрерывный набор проводимостей в изготовленных устройствах. На созданных «аналоговых» мемристорах учёные смоделировали несколько механизмов обучения («пластичность») биологических синапсов. В частности, речь идёт о таких функциях, как долговременное усиление или ослабление связи между двумя нейронами. Общепринято, что именно эти явления лежат в основе механизмов памяти. Информация размещенная на сайте - «hs-design.ru» Кроме того, специалистам удалось продемонстрировать более сложный механизм — так называемую временную пластичность («spike-timing-dependent plasticity»), то есть зависимость величины связи между нейронами от относительного времени их «срабатывания». Ранее было показано, что именно этот механизм отвечает за ассоциативное обучение — способности мозга находить связи между разными событиями. При этом для демонстрации такой функции в своих мемристорных устройствах авторы специально использовали электрические сигналы, подаваемые на электроды мемристоров, по форме воспроизводящие сигналы в живых нейронах, и получили зависимость, очень похожую на те, которые наблюдаются в живых синапсах. Таким образом, как утверждается, созданные элементы можно рассматривать как прототип «электронного синапса», на основе которого можно создавать искусственные нейронные сети «в железе».