Нейросеть решила задачу, неподвластную человеку - «Интернет и связь»
Меню
Наши новости
Учебник CSS

Невозможно отучить людей изучать самые ненужные предметы.

Введение в CSS
Преимущества стилей
Добавления стилей
Типы носителей
Базовый синтаксис
Значения стилевых свойств
Селекторы тегов
Классы
CSS3

Надо знать обо всем понемножку, но все о немногом.

Идентификаторы
Контекстные селекторы
Соседние селекторы
Дочерние селекторы
Селекторы атрибутов
Универсальный селектор
Псевдоклассы
Псевдоэлементы

Кто умеет, тот делает. Кто не умеет, тот учит. Кто не умеет учить - становится деканом. (Т. Мартин)

Группирование
Наследование
Каскадирование
Валидация
Идентификаторы и классы
Написание эффективного кода

Самоучитель CSS

Вёрстка
Изображения
Текст
Цвет
Линии и рамки
Углы
Списки
Ссылки
Дизайны сайтов
Формы
Таблицы
CSS3
HTML5

Новости

Блог для вебмастеров
Новости мира Интернет
Сайтостроение
Ремонт и советы
Все новости

Справочник CSS

Справочник от А до Я
HTML, CSS, JavaScript

Афоризмы

Афоризмы о учёбе
Статьи об афоризмах
Все Афоризмы

Видео Уроки


Наш опрос



Наши новости

      
      
  • 24 марта 2016, 16:20
1-01-2006, 03:00
Нейросеть решила задачу, неподвластную человеку - «Интернет и связь»
Рейтинг:

Новая нейронная сеть может решить задачу трех тел в 100 миллионов раз быстрее, чем человек. Об этом сообщает Science Alert со ссылкой на препринт на arXiv.org.


Нейросеть решила задачу, неподвластную человеку  - «Интернет и связь»

Что такое задача трех тел?


Впервые сформулированная Исааком Ньютоном задача трех тел состоит в определении относительного движения трех тел (материальных точек), взаимодействующих по закону тяготения Ньютона (например, Солнца, Земли и Луны).


В отличие от задачи двух тел, в общем случае задача не имеет решения в виде конечных аналитических выражений. Известны лишь отдельные точные решения для специальных начальных скоростей и координат объектов.


В 1892—1899 годах французский математик, механик, физик, астроном и философ Анри Пуанкаре доказал, что существует бесконечно много частных решений задачи трех тел. Так, на данный момент известно как минимум 21 частное решение. Например, в 1911 году американский математик и астроном Уильям Дункан Макмиллан открыл новое частное решение, но без четкого математического обоснования. Лишь в 1961 году советский математик Кирилл Ситников смог найти строгое математическое доказательство для этого случая.


И в 2013 году сербские ученые Милован Шуваков и Велько Дмитрашинович из Института физики в Белграде нашли 13 новых частных решений для задачи трех тел, при которых движение системы из трех одинаковых по массе объектов будет происходить в повторяющемся цикле.


Сегодня проблема трех тел имеет важное значение для изучения поведения шаровых звездных скоплений, галактических ядер с двойными черными дырами и других астрономических объектов.


Эту задачу может решить нейронная сеть?


Скажем так, нейронная сеть может значительно ускорить получение ответа.


Международная группа ученых из Великобритании, Португалии и Нидерландов привлекла к решению нейросеть глубокого обучения (ANN), которая находит ответ в 100 миллионов раз быстрее человека и любых имеющихся алгоритмов.


Ученые разработали нейронную сеть, обучили ее работе с базой данных, а также показали ей уже разработанные решения задачи. Исследователи упростили процесс, включив в него только три частицы равной массы, чья первоначальная скорость равнялась нулю, а затем запустили уже существующий интегратор под названием «Брутус» более 10 тысяч раз.


На основании этого обучения новый ANN получил пять тысяч новых сценариев для работы, результаты которых были сопоставлены с собственными предсказаниями «Брутуса».


Оказалось, что нейросеть лучше всего справлялась со своей задачей, если интервалы времени в обучающей выборке были минимальными. При этом нейросеть оказалась быстрее «Брутуса» в сто тысяч раз, а в некоторых случаях — в сто миллионов раз.


«В конце концов, мы предполагаем, что сеть может быть обучена более сложным хаотическим проблемам, таким как проблема четырех и пяти тел, что еще больше снижает вычислительную нагрузку», — заключают исследователи.


Новости по теме

Ученые выяснили, что защищает от стресса и депрессии

Ученые назвали смертельные последствия от глобального потепления

В России нашли останки древних гигантских белок



Если вы заметили ошибку в тексте новости, пожалуйста, выделите её и нажмите Ctrl+Enter

Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Новая нейронная сеть может решить задачу трех тел в 100 миллионов раз быстрее, чем человек. Об этом сообщает Science Alert со ссылкой на препринт на arXiv.org. Что такое задача трех тел? Впервые сформулированная Исааком Ньютоном задача трех тел состоит в определении относительного движения трех тел (материальных точек), взаимодействующих по закону тяготения Ньютона (например, Солнца, Земли и Луны). В отличие от задачи двух тел, в общем случае задача не имеет решения в виде конечных аналитических выражений. Известны лишь отдельные точные решения для специальных начальных скоростей и координат объектов. В 1892—1899 годах французский математик, механик, физик, астроном и философ Анри Пуанкаре доказал, что существует бесконечно много частных решений задачи трех тел. Так, на данный момент известно как минимум 21 частное решение. Например, в 1911 году американский математик и астроном Уильям Дункан Макмиллан открыл новое частное решение, но без четкого математического обоснования. Лишь в 1961 году советский математик Кирилл Ситников смог найти строгое математическое доказательство для этого случая. И в 2013 году сербские ученые Милован Шуваков и Велько Дмитрашинович из Института физики в Белграде нашли 13 новых частных решений для задачи трех тел, при которых движение системы из трех одинаковых по массе объектов будет происходить в повторяющемся цикле. Сегодня проблема трех тел имеет важное значение для изучения поведения шаровых звездных скоплений, галактических ядер с двойными черными дырами и других астрономических объектов. Эту задачу может решить нейронная сеть? Скажем так, нейронная сеть может значительно ускорить получение ответа. Международная группа ученых из Великобритании, Португалии и Нидерландов привлекла к решению нейросеть глубокого обучения (ANN), которая находит ответ в 100 миллионов раз быстрее человека и любых имеющихся алгоритмов. Ученые разработали нейронную сеть, обучили ее работе с базой данных, а также показали ей уже разработанные решения задачи. Исследователи упростили процесс, включив в него только три частицы равной массы, чья первоначальная скорость равнялась нулю, а затем запустили уже существующий интегратор под названием «Брутус» более 10 тысяч раз. На основании этого обучения новый ANN получил пять тысяч новых сценариев для работы, результаты которых были сопоставлены с собственными предсказаниями «Брутуса». Оказалось, что нейросеть лучше всего справлялась со своей задачей, если интервалы времени в обучающей выборке были минимальными. При этом нейросеть оказалась быстрее «Брутуса» в сто тысяч раз, а в некоторых случаях — в сто миллионов раз. «В конце концов, мы предполагаем, что сеть может быть обучена более сложным хаотическим проблемам, таким как проблема четырех и пяти тел, что еще больше снижает вычислительную нагрузку», — заключают исследователи. Новости по темеУченые выяснили, что защищает от стресса и депрессии Ученые назвали смертельные последствия от глобального потепления В России нашли останки древних гигантских белок Если вы заметили ошибку в тексте новости, пожалуйста, выделите её и нажмите Ctrl Enter
Просмотров: 472
Комментариев: 0:   1-01-2006, 03:00
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 
Еще новости по теме:



Другие новости по теме: