Российские и китайские учёные нащупывают путь к «комнатной» сверхпроводимости - «Новости сети»
Меню
Наши новости
Учебник CSS

Невозможно отучить людей изучать самые ненужные предметы.

Введение в CSS
Преимущества стилей
Добавления стилей
Типы носителей
Базовый синтаксис
Значения стилевых свойств
Селекторы тегов
Классы
CSS3

Надо знать обо всем понемножку, но все о немногом.

Идентификаторы
Контекстные селекторы
Соседние селекторы
Дочерние селекторы
Селекторы атрибутов
Универсальный селектор
Псевдоклассы
Псевдоэлементы

Кто умеет, тот делает. Кто не умеет, тот учит. Кто не умеет учить - становится деканом. (Т. Мартин)

Группирование
Наследование
Каскадирование
Валидация
Идентификаторы и классы
Написание эффективного кода

Самоучитель CSS

Вёрстка
Изображения
Текст
Цвет
Линии и рамки
Углы
Списки
Ссылки
Дизайны сайтов
Формы
Таблицы
CSS3
HTML5

Новости

Блог для вебмастеров
Новости мира Интернет
Сайтостроение
Ремонт и советы
Все новости

Справочник CSS

Справочник от А до Я
HTML, CSS, JavaScript

Афоризмы

Афоризмы о учёбе
Статьи об афоризмах
Все Афоризмы

Видео Уроки


Наш опрос



Наши новости

      
  • 24 марта 2016, 16:20
4-03-2020, 12:04
Российские и китайские учёные нащупывают путь к «комнатной» сверхпроводимости - «Новости сети»
Рейтинг:


Эффект сверхпроводимости сулит качественно иную передачу электроэнергии, когда практически не будет потерь от транспортировки по сетям передачи. Препятствием на этом пути остаётся необходимость значительного охлаждения материалов для появления сверхпроводимости. В идеале необходимо найти металлы, у которых сверхпроводимость проявлялась бы при комнатной температуре. На днях шаг в эту сторону сделала группа российских и китайских учёных.


Учёные из Сколково и Цзилиньского университета (Китай) смогли создать соединение, которое невозможно предсказать или описать классической химией. В ходе серии экспериментов было получено соединение водорода с празеодимом, металлом из группы лантаноидов. Водородные соединения или гидриды, как принято считать в последние полтора десятилетия, могут являться отличными сверхпроводниками. Вот только получить металлический водород можно в условиях огромных давлений свыше 4 миллионов атмосфер.


В поставленном эксперименте металлический празеодим помещался в наполненную водородом среду и сжимался между двумя алмазными конусообразными «наковальнями». При этом образец нагревался с помощью лазера. В условиях нагрева и давления 40 ГПа вещества вступали в реакцию и получалось искомое соединение PrH3. Одна проблема, в таких условиях алмазные «наковальни» вступают в реакцию с водородом и могут разрушаться.


Чтобы избежать разрушения алмазного инструмента, учёные поменяли чистый водород на такое его соединение, как боран аммония. Это вещество содержит много водорода, который выделяется при нагреве и вступает в соединение с празеодимом. Только вот в процессе синтеза получилось соединение PrH9 с намного большим числом атомов водорода, чем может удержать празеодим в рамках классической химии. Такие «невозможные» молекулы описываются с использованием «квантовой» химии.


«Формально электронное строение атома празеодима не позволяет ему образовывать такое большое количество связей с другими атомами. Однако существование подобных «неправильных» соединений можно предсказать сложными квантовыми расчетами и подтвердить экспериментами».


Получение PrH9 не стало неожиданностью. Ранее учёные похожим образом синтезировали соединения водорода с лантаном — металлом из той же группы. Однако изучение нового соединения выявило интересную особенность. Выяснилось, что гидрид празеодима переходит в состояние сверхпроводника при температуре в ?264 °С, что намного ниже температуры сверхпроводимости гидрида лантана LaH10. Иными словами, молекулы похожего строения повели себя непредсказуемо.


Выяснилось, что атомы празеодима, кроме того, что они являются донорами электронов, ещё несут с собой небольшие магнитные моменты, которые подавляют сверхпроводимость. Это явление ведёт к тому, что температура появления сверхпроводимости падает. Эффект, на первый взгляд, отрицательный, ведь нам нужно повышать температуру сверхпроводимости. Но выявленное явление чётко указывает, с какими металлами лучше иметь дело для поиска «комнатной» сверхпроводимости, а с какими нет.


В частности, для этого лучше использовать металлы из «пояса лабильности», расположенного между II и III группами таблицы Менделеева, а из лантаноидов ближе всего к «поясу лабильности» лантан и церий. Ждём новых экспериментов.
Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Эффект сверхпроводимости сулит качественно иную передачу электроэнергии, когда практически не будет потерь от транспортировки по сетям передачи. Препятствием на этом пути остаётся необходимость значительного охлаждения материалов для появления сверхпроводимости. В идеале необходимо найти металлы, у которых сверхпроводимость проявлялась бы при комнатной температуре. На днях шаг в эту сторону сделала группа российских и китайских учёных. Учёные из Сколково и Цзилиньского университета (Китай) смогли создать соединение, которое невозможно предсказать или описать классической химией. В ходе серии экспериментов было получено соединение водорода с празеодимом, металлом из группы лантаноидов. Водородные соединения или гидриды, как принято считать в последние полтора десятилетия, могут являться отличными сверхпроводниками. Вот только получить металлический водород можно в условиях огромных давлений свыше 4 миллионов атмосфер. В поставленном эксперименте металлический празеодим помещался в наполненную водородом среду и сжимался между двумя алмазными конусообразными «наковальнями». При этом образец нагревался с помощью лазера. В условиях нагрева и давления 40 ГПа вещества вступали в реакцию и получалось искомое соединение PrH3. Одна проблема, в таких условиях алмазные «наковальни» вступают в реакцию с водородом и могут разрушаться. Чтобы избежать разрушения алмазного инструмента, учёные поменяли чистый водород на такое его соединение, как боран аммония. Это вещество содержит много водорода, который выделяется при нагреве и вступает в соединение с празеодимом. Только вот в процессе синтеза получилось соединение PrH9 с намного большим числом атомов водорода, чем может удержать празеодим в рамках классической химии. Такие «невозможные» молекулы описываются с использованием «квантовой» химии. «Формально электронное строение атома празеодима не позволяет ему образовывать такое большое количество связей с другими атомами. Однако существование подобных «неправильных» соединений можно предсказать сложными квантовыми расчетами и подтвердить экспериментами». Получение PrH9 не стало неожиданностью. Ранее учёные похожим образом синтезировали соединения водорода с лантаном — металлом из той же группы. Однако изучение нового соединения выявило интересную особенность. Выяснилось, что гидрид празеодима переходит в состояние сверхпроводника при температуре в ?264 °С, что намного ниже температуры сверхпроводимости гидрида лантана LaH10. Иными словами, молекулы похожего строения повели себя непредсказуемо. Выяснилось, что атомы празеодима, кроме того, что они являются донорами электронов, ещё несут с собой небольшие магнитные моменты, которые подавляют сверхпроводимость. Это явление ведёт к тому, что температура появления сверхпроводимости падает. Эффект, на первый взгляд, отрицательный, ведь нам нужно повышать температуру сверхпроводимости. Но выявленное явление чётко указывает, с какими металлами лучше иметь дело для поиска «комнатной» сверхпроводимости, а с какими нет. В частности, для этого лучше использовать металлы из «пояса лабильности», расположенного между II и III группами таблицы Менделеева, а из лантаноидов ближе всего к «поясу лабильности» лантан и церий. Ждём новых экспериментов.
Просмотров: 395
Комментариев: 0:   4-03-2020, 12:04
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 
Еще новости по теме:



Другие новости по теме: